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Temperature dependence of pair correlations and correlation entropy in a fluid
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For a system of atoms interacting through a pair potential, the entropy is evaluated by molecular dy-
namics at temperatures from the liquid to the gas. The pair potential represents aluminum in the liquid
regime and the calculated entropy is in close agreement with experiment. The temperature dependence
of the entropy is understood in terms of structural changes in the pair correlation function. Of the two
approximate entropy expansions evaluated in low orders, the Nettleton-Raveché-Green expansion is
more accurate at high temperatures, while the multiparticle irreducible correlation expansion is more

accurate for the liquid.

PACS number(s): 05.20.—y, 05.70.Ce, 65.50.+m

I. INTRODUCTION

Our goal is to use molecular dynamics (MD) calcula-
tions to make a comparison of approximate entropy for-
mulas with the exact entropy, for a single system at tem-
peratures from the liquid to the gas. In classical statis-
tics, the difficult part of the entropy is the correlation en-
tropy, arising from the configuration integral in the parti-
tion function. In the following section, mention is made
of the virial expansion for a gas, and then two expansions
are described which have a chance of converging well for
a liquid, namely, the Nettleton-Green-Raveché (NGR)
expansion, and the multiparticle irreducible correlation
(MIC) expansion. MD evaluations of the exact entropy,
and also of each of these expansions correct to second or-
der, are presented in Sec. III. It is concluded in Sec. IV
that the MIC expansion is more accurate for a liquid,
while the NGR expansion is more accurate at tempera-
tures approaching the gas regime.

We work with entropy in units of kz per atom, where
kg is the Boltzmann’s constant. For an elemental liquid
at around the melting temperature T,,, the total entropy
is =~ 10, the correlation entropy is ~ —2.6, the entropy of
melting is ~1.0, and an excellent theory of entropy
should be accurate to 10. 1, which is also the level of ac-
curacy attained by quasiharmonic lattice dynamics
theory for the crystalline state.

II. APPROXIMATE ENTROPY FORMULAS

Let us consider a system of N like atoms in a volume V,
with particle density p=N/V. The entropy S in the
canonical ensemble is [1]

S=S,+S,, (1)
where the one-particle term is
Sy=—p ' [ fVp)n[A3f V(p)]dp . 2)

The integral can be done, since f'!(p) is the normalized
Boltzmann distribution, yielding

S, =2—In(pA*), A3)
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where A=h(B/(2mM))!/? is the de Broglie wavelength,
M is the particle mass, and B=(k BT)_‘. The correlation
entropy S, arises from the configuration integral in the
partition function, and is expressed [1] as

Sc=—N—l(pN/N!)f fg‘”’lng‘”’drl coedry, (@)

where g'¥(r,, ..., ry) is the N-particle correlation func-
tion, with r; being the particle positions. These equations
are valid at all temperatures and densities where classical
statistics apply. However, the N-particle integral in S, is
generally intractable, so it is useful to develop approxi-
mations for this integral.

We first examine the gas regime. The correlation func-
tion g(N )(tl, ...,Ty) depends on the total system poten-
tial ®(r,,...,ry), and in the physically realistic case,
where Coulomb forces are screened, and where there are
no infinite hard cores, the total system potential is spa-
tially integrable. This means the gas regime is reached
both at low densities (p—0), and at high temperatures
(B—0) [2]. Under either of these conditions, the virial
expansion can be made, yielding

S, =1+82+ -, (5)

where S!2'+ - -- represents the virial series, a power
series in p [3]. The value 1 expresses that each particle
moves freely throughout the entire system volume; the
series S+ --- expresses interference of this free
motion, from the atomic interactions, and is negative,
hence reduces S, from the ideal gas value of 1. The virial
expansion has a radius of convergence [4], which presum-
ably does not extend to the liquid regime.

Before we can approximate S, for a liquid, we need to
recognize the physically spurious long range correlation
present in constant-N ensembles. First, in any ensemble,
there is presumed to exist a correlation length /. [5], nor-
mally a few nearest-neighbor distances, beyond which the
two particle correlation vanishes, as indicated by the con-
dition g'®(r)=const for r>1I.. In the grand canonical
ensemble this constant is 1, and the normalization is

p[1gPn—1ldr=—1+a, (6)
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where a=kpTpk, and k=—(3InV /0P)y y is the iso-
thermal compressibility. The variable a is a measure of
the density fluctuations, and is positive; a<<1 for a
ll%uld and a=1 for a gas. In the canonical ensemble,

2)(7) has a nonphysical long range correlation because,
glven a particle at any position, the number of remaining
particles is exactly N —1. Thus, g®(r)=1—a/N for
r> 1. [6], and the normalization is

p[lg?(r—1ldr=—1. )

To obtain the same normalization in any ensemble, we
limit the integration to r <1, denoted by f .dr, and find

p [ g?P(N—1ldr=—1+a+O0(N7"). 8)

This result is valid for all ensembles, since g‘?(7) is the
same to order N ~! in all ensembles [7]. Analogous prop-
erties hold for higher correlation functions

(n)
gy, ...,y

Turning to the correlation entropy for a liquid, we note
the motion of particles in a liquid represents an opposite
extreme from a gas: in a liquid there is essentially no free
particle motion, but rather, each particle moves within a
cage formed by its neighbors. Hence in a liquid, the im-
portant correlation is contained in the g™ for small n,
specifically for n=2,3,.... This concept led Green [8]
to the multiparticle correlation expansion of Ing™ in the
canonical ensemble, the first term of which is
(1)2;Ing?. However, the spatial integral of Green’s ex-
pansion contains the nonphysical long range correlations
resulting from the constant-N condition. In the past, we
eliminated this problem by using grand canonical correla-
tion functions [1,9]. Here we will limit the integrations to
within the correlation length, giving results valid in all
ensembles:

Sc =S2+S3+ T ©
where
S,=—1p [ e (Ning@(r)dr . (10)
c

Equation (9) is denoted the multiparticle irreducible
correlation (MIC) expansion, since each term S, depends
on irreducible n-particle correlations, that is, correlations
which are not contained in lower-order correlation func-
tions [1,9]. Hence the relevant expansion parameter is
the number n of correlated particles. This expansion is
expected to converge rapidly for the highly correlated
liquid state, and by now there is strong support of this
convergence, as summarized in Sec. IV.

In Green’s original expansion of the complete entropy
[8], the one-particle term is undefined [9], and the mul-
tiparticle terms contain the physically spurious long
range correlation of the canonical ensemble. To elimi-
nate this long range correlation, Nettleton and Green
[10] constructed a grand canonical expansion in powers
of the density, and in the process they fixed the one parti-
cle term at the ideal gas value S| +1. This expansion was
also discussed by Yvon [11]. An alternate derivation was
given by Raveché [12], and was evaluated for liquid mod-
els by Mountain and Raveché [13]. Let us write the
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Nettleton-Green-Raveché (NGR) expansion as
SNGR_SNGR +S(P§C);R *t . (11)

Each term S{{3g, for n>2, contains the irreducible
correlation term S,, plus a cumulant expression having
correlation functions of every order up to n. Specifically,

SNGrR=S+1, (12a)
S{er=5,+1p [ [g®(n—1]dr, (12b)

and so on. Since the relevant expansion parameter is the
density, the NGR expansion has the correct limit in the
gas regime.

The NGR and the MIC expansions are merely rear-
rangements of one another. Hence, while they differ term
by term, each has the same formal sum when carried to
all orders. In the liquid regime, aside from very small
terms in @, the NGR expansion differs by the amount
n~!, in order n, from the MIC expansion [1]. The
difference n ~! is crucial in practical applications, where
S is needed to an accuracy of around 0. 1.

For completeness, we should mention some related en-
tropy studies. Fisher [14] derived an entropy expansion
in which the one-particle term is S, +1, while the two-
particle term is S,. Faber [15] tested this expansion for
Al and Hg, and concluded correctly that it is inaccurate.
Baranyai and Evans [16,17] express the opinion that the
MIC expansion cannot be correct because it differs term
by term from the NGR expansion.

III. MOLECULAR DYNAMIC CALCULATIONS
The Hamiltonian is taken to be

N p?
H= 22M+ 24;,], (13)

i=1 11—1

where p; is the momentum of atom i, and
¢,-j=¢(|r,~—rj|,V) is a two-body central potential. The
effective interaction between ions ¢(r, V) was calculated
[18] using pseudopotential theory and consists of the sum
of a direct Coulomb repulsion between the ionic cores
and a volume dependent induced interaction mediated by
the electrons. We study the classical statistical mechan-
ics of this system at the fixed density p, =0.063276 A 3,
and at temperatures from melting to the virial reglme.
Our MD calculations are done with the Verlet algorithm,
for systems containing N =864 4032 atoms, with period-
ic boundary conditions.

This study was undertaken as part of a program to cal-
culate ab initio thermodynamic properties of metallic
alummum [18]. Hence p, is close to the density 0.061 025
A 73 of aluminum at zero temperature and pressure, and
the potential ¢(r, ¥) was constructed to model real alumi-
num at density p,, and at temperatures where the valence
electrons are approximately in their ground state, i.e.,
where kpT is small compared with the Fermi energy €.
At higher temperatures the electrons become strongly ex-
cited, and the Hamiltonian no longer represents alumi-
num. In other words, the Hamiltonian given by Eq. (13)
describes the low lying states of Al, and its thermo-
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dynamical properties will correspond with those of real
aluminum [19] at temperatures T <e€y/kp, where only
those low lying states determine the statistical mechanics
of both systems. Indeed, the calculations presented here
were utilized for an accurate ab initio determination of
the entropy of liquid aluminum [18]. Note for aluminum
at p;, e=0.62 Ry, T,,=~1860 K=0.0118 Ry, and our
results represent real aluminum for T at least to 107 ,,.

To determine the entropy in the fluid phase of the sys-
tem described by the Hamiltonian in Eq. (13), it is neces-
sary to calculate the internal energy as a function of the
temperature, up to the very high temperatures where the
virial expansion can be used to evaluate the entropy con-
stant. This procedure will now be described.

The mean potential energy per atom, evaluated by MD
and denoted by U, is shown in Fig. 1, and displays the
two important characteristics found in our study of me-
tallic sodium [2]. (a) At temperatures just above T,,, the
slope of U, vs kgT is 3, within 5%. Since the mean
kinetic energy per atom is (J)kp 7, then the liquid has
specific heat at constant volume C,, =3k at T,,, and C),
decreases slowly as T increases. Hence the atomic
motional energy of the liquid corresponds to 3N harmon-
ic oscillators. (b) Since ¢(7, V) is integrable, then U¢ satu-
rates at high temperatures to the known limit [2]
Us=1(¢), and Cy approaches 2kp. Here,

(¢)=4ﬂ'pf0w¢(r,V)r2dr (14)

and 1(¢)=1.731£0.02 Ry for our present potential.
Hence at very high temperatures, the kinetic energy dom-
inates the potential, the atoms move nearly as free parti-
cles, and the system is a gas.

Similarly, as shown in Fig. 2, the contribution to the
pressure from the internal virial, P, which for a metallic
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FIG. 1. Mean potential energy per atom, from MD calcula-
tions, from T/T,,=1.1372 up to 1199.6. On the scale shown,
T /T, =1.1372 is indistinguishable from zero.
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FIG. 2. (a) The mean potential energy per atom as a function
of T/T,, from MD simulations (circles) and the virial expansion
(squares). (b) The internal virial contribution to the pressure as
a function of T /T,, from MD simulations (circles) and the virial
expansion (squares).

system is given by [20]

Py=—p’ [ “2mr’gP(r) dr, (15

rog . 086
3 or +V8V

saturates at very high temperatures and the law P =pkp T
is obeyed.

The virial expansion for a metallic system at constancy
density yields [2]

JdB
BU,=—p——r - (16)
alnT V,N
BP,= |B,— o P, (17)
¢ dlnV |1y
where
B2=21rf0°°(1-e_'w”V))rzdr R (18)

and where + --- represents terms in higher virial
coefficients. The approach of our MD system to the viri-
al limit is shown in Fig. 2. At the highest temperature
considered, kpT, .. =14.1308 Ry, the internal energy
per particle U=(3)kzgT+U,, and the pressure
P=kpTp+P calculated from the virial expansion agree
with those of the MD simulation to 0.16% and 0.19%,
respectively. The discrepancy is due to the neglect of
higher-order terms in the virial expansion. The entropy,
calculated from the virial expansion, Eq. (5),
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2)—
Sy P dInT

B,+

, (19)

V,N

and an estimate of B,, gives $=23.534+.002 at T,,.
The entropy at lower temperatures [21] is then calculated
by using the thermodynamic identity

U(T) U(Tye) T
T T +fT

max ma.

Uu(rT’)
T"?

20

S(T)—S(Tgay)=

’

aT’

at fixed volume and number of particles. Here the inter-
nal energy per particle, U, is determined from MD simu-
lations.

The pair correlation function g(r)=g®(r) was also
evaluated from the MD calculations, and a series of g (7)
at various temperatures is shown in Fig. 3. For T just
above T,,, the height of the nearest-neighbor peak is 2.8,
and six neighbor shells are clearly visible. As T increases,
the height of the first peak drops, the shell structure
gradually disappears, and the nearest-neighbor shoulder
moves to smaller distances. For TR 100T,,, g(r) ap-
proaches its virial limit of e ~## "),

When we analyze our g (r) data, the limit at large ris 1
within error estimates. However, when we numerically
integrate g (r)— 1, the integral shows a drift as a function
of its upper limit R, at large R, consistent with the canon-
ical value 1—a/N for g(r) at large r. This property
yields a value of the correlation length /., which is a func-
tion of temperature. Results for a, obtained by evaluat-
ing the integral in Eq. (8), are graphed in Fig. 4, and show

FIG. 3. Pair correlation functions, showing transition from

liquid to gas behavior, as y=T/T,, increases.
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FIG. 4. Density fluctuation parameter a vs log(7T/T,,) (the
log base is 10).

the expected behavior: a <<1 at low temperatures in the
liquid regime, and a increases toward 1 as temperature
increases toward the gas regime.

The exact correlation entropy S. =S —S, is shown in
Fig. 5, and is compared with the two entropy expansions,
in second order:

S.=1+S&r,
S,=S,, MIC,

NGR, (21a)
(21b)

where S{%; is given by Eq. (12) and S, is given by Eq.
(10). Figure 5 exhibits the behavior previously predicted
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FIG. 5. The exact correlation entropy (solid line), the NGR
(squares) and the MIC expansions (circles) to second order, as a
function of T/T,,. The inset shows the deviations of the two
expansions from the exact correlation entropy.
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[1,9]: in second order, the MIC expansion is more accu-
rate for the liquid, while the NGR expansion is more ac-
curate for the gas.

IV. DISCUSSION

In the graph of a vs T, Fig. 4, a will continue to in-
crease, and approach 1, as T increases above 103T,,,. The
temperature dependence of a shows three qualitative re-
gimes for the system studied here: the liquid for
T 510T,, (a<<1); the regime intermediate from liquid
to gas; and the gas for T2 10°T,, (a~=1). This is con-
sistent with the fact that we reach the virial limit, i.e., the
virial expansion becomes highly accurate, for T 2 10°T,,.
It is seen from Fig. 3 that the pair correlation function
exhibits shell structure throughout the liquid regime,
while in the intermediate regime there is only a remnant
of shell structure, and the main characteristic of pair
correlation is the excluded volume at close range.

The two entropy expansions considered here, the NGR
and the MIC expansions, are both formally correct.
However, they differ term by term, and the practical
question is, how well do they represent the entropy in low
order? In the virial regime, the NGR expansion is accu-
rate in low order, since it approaches the virial expansion

CARLOS R. SANCHEZ-CASTRO et al. 50

term by term, while the MIC expansion is inaccurate in
low order, since the low-order terms completely miss the
ideal gas correlation entropy of 1 [1]. At lower tempera-
tures, when the expansions are evaluated to second order,
each has its region of applicability, as shown in Fig. 5:
The MIC expansion is more accurate for the liquid, while
the NGR expansion is more accurate for the upper part
of the intermediate regime. Similar behavior is apparent
in the results given previously for hard spheres [1].

An extensive examination of the entropy of liquid met-
als has been carried out [22], in which S, was calculated
from experimental data for g(r), and the entropy of
thermal excitation of the valence electrons was accounted
for. The conclusions are (a) the terms S, +S, alone gen-
erally represent the ion motional entropy to within the
combined errors of the analysis, which in many cases is to
an accuracy of 0.1, and (b) exception of this behavior
for a few metals and semimetals is attributed to higher-
order correlation entropy, which turns out to be negative
in all cases, and which is associated with the presence of
many body forces. Further, except for those ‘“anoma-
lous” elements which undergo a change in electronic
structure upon melting [23], the zero pressure experimen-
tal results for S, vs (T/T,,) display approximately
universal behavior for all elemental liquids, in agreement
with the behavior shown by S, in Fig. 5.
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